Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Periodontol ; 50(12): 1658-1669, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855275

RESUMO

AIM: To determine the effects of RVX-208, a selective bromodomain and extra-terminal domain (BET) inhibitor targeting bromodomain 2 (BD2), on periodontal inflammation and bone loss. MATERIALS AND METHODS: Macrophage-like cells (RAW264.7) and human gingival epithelial cells were challenged by Porphyromonas gingivalis (Pg) with or without RVX-208. Inflammatory gene expression and cytokine production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RAW264.7 cells were induced to osteoclast differentiation. After RVX-208 treatment, osteoclast differentiation was evaluated by histology, tartrate-resistant-acid-phosphatase (TRAP) activity and the expression of osteoclast-specific genes. The effect of RVX-208 on osteoclast transcriptome was studied by RNA sequencing. Periodontitis was induced in rats by ligature and local RVX-208 treatment was administered every other day. Alveolar bone loss was measured by micro-computed tomography. RESULTS: RVX-208 inhibited inflammatory gene expression and cytokine production in Pg-infected cells. Osteoclast differentiation was inhibited by RVX-208, as evidenced by reduced osteoclast number, TRAP activity and osteoclast-specific gene expression. RVX-208 displayed a more selective and less profound suppressive impact on transcriptome compared with pan-BET inhibitor, JQ1. RVX-208 administration prevented the alveolar bone loss in vivo. CONCLUSIONS: RVX-208 regulated both upstream (inflammatory cytokine production) and downstream (osteoclast differentiation) events that lead to periodontal tissue destruction, suggesting that it may be a promising 'epi-drug' for the prevention of periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Ratos , Humanos , Animais , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/patologia , Microtomografia por Raio-X , Inflamação/tratamento farmacológico , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Periodontite/patologia , Osteoclastos , Citocinas
2.
J Cancer ; 12(9): 2735-2746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854633

RESUMO

Cancer cells can evade the attack from host immune systems via hijacking the regulatory circuits mediated by immune checkpoints. Therefore, reactivating the antitumor immunity by blockade of immune checkpoints is considered as a promising strategy to treat cancer. Programmed death protein 1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1) are critical immune checkpoint proteins that responsible for negative regulation of the stability and the integrity of T-cell immune function. Anti-PD-1/PD-L1 drugs have been developed for immune checkpoint blockade and can induce clinical responses across different types of cancers, which provides a new hope to cure cancer. However, the patients' response rates to current anti-PD-1 or anti-PD-L1 therapies are still low and many initial responders finally develop resistance to these therapies. In this review, we provides a snapshot of the PD-1/PD-L1 molecular structure, mechanisms controlling their expression, signaling modulated by PD-1/PD-L1, current anti-PD-1/PD-L1 therapies, and the future perspectives to overcome the resistance.

3.
FASEB J ; 34(2): 2730-2748, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908013

RESUMO

The small GTPase Ras-related protein Rab-7a (Rab7a) serves as a key organizer of the endosomal-lysosomal system. However, molecular mechanisms controlling Rab7a activation levels and subcellular translocation are still poorly defined. Here, we demonstrate that type Igamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an endosome-localized enzyme that produces phosphatidylinositol 4,5-bisphosphate, directly interacts with Rab7a and plays critical roles in the control of the endosomal-lysosomal system. The loss of PIPKIγi5 blocks Rab7a recruitment to early endosomes, which prevents the maturation of early to late endosomes. PIPKIγi5 loss disturbs retromer complex connection with Rab7a, which blocks the retrograde sorting of Cation-independent Mannose 6-Phosphate Receptor from late endosomes. This leads to the decreased sorting of hydrolases to lysosomes and reduces the autophagic degradation. By modulating the retromer-Rab7a connection, PIPKIγi5 is also required for the recruitment of the GTPase-activating protein TBC1 domain family member 5 to late endosomes, which controls the conversion of Rab7a from the active state to the inactive state. Thus, PIPKIγi5 is critical for the modulation of Rab7a activity, localization, and function in the endosomal-lysosomal system.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Autofagia/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Camundongos Transgênicos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Proteico/fisiologia , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...